Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
نویسنده
چکیده
We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close to Saturn’s rotation period usually recur in the same magnetospheric location. We suggest that these events result from current sheet acceleration in the 15–20 Rs range, probably associated with reconnection and plasmoid formation in Saturn’s magnetotail. Simultaneous auroral observations by the Hubble Space Telescope (HST) and the Cassini Ultraviolet Imaging Spectrometer (UVIS) suggest a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent ENA enhancements coincide closely with bursts of Saturn kilometric radiation, again pointing to possible linkage with high latitude auroral processes. We argue that the rotating azimuthal asymmetry of the ring current pressure revealed in the ENA images creates an associated rotating field aligned current system linking to the ionosphere and driving the correlated
منابع مشابه
Global Multispectral Auroral Imaging of an Isolated Substorm
Abstract. We analyze simultaneous visible, ultraviolet (UV), and X-ray auroral images of an isolated substorm on January 25, 1998. The total precipitating electron energy flux and mean energy extracted near substorm maximum from each of the imagers are in acceptable agreement. The expansion phase visible, UV, and Xray emissions are morphologically similar, with the brightest emissions coming fr...
متن کاملCassini observations of ionospheric plasma in Saturn's magnetotail lobes
Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a...
متن کاملAuroral Emissions of the Giant Planets
Auroras are (generally) high-latitude atmospheric emissions that result from the precipitation of energetic charged particles from a planet’s magnetosphere. Auroral emissions from the giant planets have been observed from ground-based observatories, Earthorbiting satellites (e.g., International Ultraviolet Explorer (IUE), Hubble Space Telescope (HST), and Röentgensatellit (ROSAT)), flyby spacec...
متن کاملReconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics
[1] The first extended series of observations of Saturn’s auroral emissions, undertaken by the Hubble Space Telescope in January 2004 in conjunction with measurements of the upstream solar wind and interplanetary magnetic field (IMF) by the Cassini spacecraft, have revealed a strong auroral response to the interplanetary medium. Following the arrival of the forward shock of a corotating interac...
متن کاملA statistical analysis of the location and width of Saturn’s southern auroras
A selection of twenty-two Hubble Space Telescope images of Saturn’s ultraviolet auroras obtained during 1997–2004 has been analysed to determine the median location and width of the auroral oval, and their variability. Limitations of coverage restrict the analysis to the southern hemisphere, and to local times from the post-midnight sector to just past dusk, via dawn and noon. It is found that ...
متن کامل